direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C22⋊C4×C2×C10, C24⋊5C20, C25.3C10, (C23×C4)⋊2C10, (C23×C20)⋊5C2, C23⋊5(C2×C20), (C2×C20)⋊13C23, (C23×C10)⋊11C4, (C24×C10).2C2, C2.1(C23×C20), C23.58(C5×D4), C24.28(C2×C10), C10.74(C23×C4), C22⋊2(C22×C20), C22.57(D4×C10), (C2×C10).332C24, (C22×C20)⋊57C22, C10.177(C22×D4), (C22×C10).219D4, C22.5(C23×C10), C23.65(C22×C10), (C23×C10).88C22, (C22×C10).251C23, C2.1(D4×C2×C10), (C2×C4)⋊3(C22×C10), (C2×C10)⋊11(C22×C4), (C22×C10)⋊23(C2×C4), (C22×C4)⋊15(C2×C10), (C2×C10).679(C2×D4), SmallGroup(320,1514)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C2×C10 — C2×C20 — C5×C22⋊C4 — C10×C22⋊C4 — C22⋊C4×C2×C10 |
Generators and relations for C22⋊C4×C2×C10
G = < a,b,c,d,e | a2=b10=c2=d2=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, de=ed >
Subgroups: 1010 in 674 conjugacy classes, 338 normal (12 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, C10, C10, C10, C22⋊C4, C22×C4, C22×C4, C24, C24, C24, C20, C2×C10, C2×C10, C2×C10, C2×C22⋊C4, C23×C4, C25, C2×C20, C2×C20, C22×C10, C22×C10, C22×C22⋊C4, C5×C22⋊C4, C22×C20, C22×C20, C23×C10, C23×C10, C23×C10, C10×C22⋊C4, C23×C20, C24×C10, C22⋊C4×C2×C10
Quotients: C1, C2, C4, C22, C5, C2×C4, D4, C23, C10, C22⋊C4, C22×C4, C2×D4, C24, C20, C2×C10, C2×C22⋊C4, C23×C4, C22×D4, C2×C20, C5×D4, C22×C10, C22×C22⋊C4, C5×C22⋊C4, C22×C20, D4×C10, C23×C10, C10×C22⋊C4, C23×C20, D4×C2×C10, C22⋊C4×C2×C10
(1 86)(2 87)(3 88)(4 89)(5 90)(6 81)(7 82)(8 83)(9 84)(10 85)(11 114)(12 115)(13 116)(14 117)(15 118)(16 119)(17 120)(18 111)(19 112)(20 113)(21 135)(22 136)(23 137)(24 138)(25 139)(26 140)(27 131)(28 132)(29 133)(30 134)(31 125)(32 126)(33 127)(34 128)(35 129)(36 130)(37 121)(38 122)(39 123)(40 124)(41 96)(42 97)(43 98)(44 99)(45 100)(46 91)(47 92)(48 93)(49 94)(50 95)(51 108)(52 109)(53 110)(54 101)(55 102)(56 103)(57 104)(58 105)(59 106)(60 107)(61 73)(62 74)(63 75)(64 76)(65 77)(66 78)(67 79)(68 80)(69 71)(70 72)(141 153)(142 154)(143 155)(144 156)(145 157)(146 158)(147 159)(148 160)(149 151)(150 152)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 62)(2 63)(3 64)(4 65)(5 66)(6 67)(7 68)(8 69)(9 70)(10 61)(11 154)(12 155)(13 156)(14 157)(15 158)(16 159)(17 160)(18 151)(19 152)(20 153)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)(41 60)(42 51)(43 52)(44 53)(45 54)(46 55)(47 56)(48 57)(49 58)(50 59)(71 83)(72 84)(73 85)(74 86)(75 87)(76 88)(77 89)(78 90)(79 81)(80 82)(91 102)(92 103)(93 104)(94 105)(95 106)(96 107)(97 108)(98 109)(99 110)(100 101)(111 149)(112 150)(113 141)(114 142)(115 143)(116 144)(117 145)(118 146)(119 147)(120 148)(121 136)(122 137)(123 138)(124 139)(125 140)(126 131)(127 132)(128 133)(129 134)(130 135)
(1 55)(2 56)(3 57)(4 58)(5 59)(6 60)(7 51)(8 52)(9 53)(10 54)(11 27)(12 28)(13 29)(14 30)(15 21)(16 22)(17 23)(18 24)(19 25)(20 26)(31 153)(32 154)(33 155)(34 156)(35 157)(36 158)(37 159)(38 160)(39 151)(40 152)(41 67)(42 68)(43 69)(44 70)(45 61)(46 62)(47 63)(48 64)(49 65)(50 66)(71 98)(72 99)(73 100)(74 91)(75 92)(76 93)(77 94)(78 95)(79 96)(80 97)(81 107)(82 108)(83 109)(84 110)(85 101)(86 102)(87 103)(88 104)(89 105)(90 106)(111 138)(112 139)(113 140)(114 131)(115 132)(116 133)(117 134)(118 135)(119 136)(120 137)(121 147)(122 148)(123 149)(124 150)(125 141)(126 142)(127 143)(128 144)(129 145)(130 146)
(1 16 67 32)(2 17 68 33)(3 18 69 34)(4 19 70 35)(5 20 61 36)(6 11 62 37)(7 12 63 38)(8 13 64 39)(9 14 65 40)(10 15 66 31)(21 50 153 54)(22 41 154 55)(23 42 155 56)(24 43 156 57)(25 44 157 58)(26 45 158 59)(27 46 159 60)(28 47 160 51)(29 48 151 52)(30 49 152 53)(71 128 88 111)(72 129 89 112)(73 130 90 113)(74 121 81 114)(75 122 82 115)(76 123 83 116)(77 124 84 117)(78 125 85 118)(79 126 86 119)(80 127 87 120)(91 147 107 131)(92 148 108 132)(93 149 109 133)(94 150 110 134)(95 141 101 135)(96 142 102 136)(97 143 103 137)(98 144 104 138)(99 145 105 139)(100 146 106 140)
G:=sub<Sym(160)| (1,86)(2,87)(3,88)(4,89)(5,90)(6,81)(7,82)(8,83)(9,84)(10,85)(11,114)(12,115)(13,116)(14,117)(15,118)(16,119)(17,120)(18,111)(19,112)(20,113)(21,135)(22,136)(23,137)(24,138)(25,139)(26,140)(27,131)(28,132)(29,133)(30,134)(31,125)(32,126)(33,127)(34,128)(35,129)(36,130)(37,121)(38,122)(39,123)(40,124)(41,96)(42,97)(43,98)(44,99)(45,100)(46,91)(47,92)(48,93)(49,94)(50,95)(51,108)(52,109)(53,110)(54,101)(55,102)(56,103)(57,104)(58,105)(59,106)(60,107)(61,73)(62,74)(63,75)(64,76)(65,77)(66,78)(67,79)(68,80)(69,71)(70,72)(141,153)(142,154)(143,155)(144,156)(145,157)(146,158)(147,159)(148,160)(149,151)(150,152), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,62)(2,63)(3,64)(4,65)(5,66)(6,67)(7,68)(8,69)(9,70)(10,61)(11,154)(12,155)(13,156)(14,157)(15,158)(16,159)(17,160)(18,151)(19,152)(20,153)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35)(41,60)(42,51)(43,52)(44,53)(45,54)(46,55)(47,56)(48,57)(49,58)(50,59)(71,83)(72,84)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)(79,81)(80,82)(91,102)(92,103)(93,104)(94,105)(95,106)(96,107)(97,108)(98,109)(99,110)(100,101)(111,149)(112,150)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,136)(122,137)(123,138)(124,139)(125,140)(126,131)(127,132)(128,133)(129,134)(130,135), (1,55)(2,56)(3,57)(4,58)(5,59)(6,60)(7,51)(8,52)(9,53)(10,54)(11,27)(12,28)(13,29)(14,30)(15,21)(16,22)(17,23)(18,24)(19,25)(20,26)(31,153)(32,154)(33,155)(34,156)(35,157)(36,158)(37,159)(38,160)(39,151)(40,152)(41,67)(42,68)(43,69)(44,70)(45,61)(46,62)(47,63)(48,64)(49,65)(50,66)(71,98)(72,99)(73,100)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,97)(81,107)(82,108)(83,109)(84,110)(85,101)(86,102)(87,103)(88,104)(89,105)(90,106)(111,138)(112,139)(113,140)(114,131)(115,132)(116,133)(117,134)(118,135)(119,136)(120,137)(121,147)(122,148)(123,149)(124,150)(125,141)(126,142)(127,143)(128,144)(129,145)(130,146), (1,16,67,32)(2,17,68,33)(3,18,69,34)(4,19,70,35)(5,20,61,36)(6,11,62,37)(7,12,63,38)(8,13,64,39)(9,14,65,40)(10,15,66,31)(21,50,153,54)(22,41,154,55)(23,42,155,56)(24,43,156,57)(25,44,157,58)(26,45,158,59)(27,46,159,60)(28,47,160,51)(29,48,151,52)(30,49,152,53)(71,128,88,111)(72,129,89,112)(73,130,90,113)(74,121,81,114)(75,122,82,115)(76,123,83,116)(77,124,84,117)(78,125,85,118)(79,126,86,119)(80,127,87,120)(91,147,107,131)(92,148,108,132)(93,149,109,133)(94,150,110,134)(95,141,101,135)(96,142,102,136)(97,143,103,137)(98,144,104,138)(99,145,105,139)(100,146,106,140)>;
G:=Group( (1,86)(2,87)(3,88)(4,89)(5,90)(6,81)(7,82)(8,83)(9,84)(10,85)(11,114)(12,115)(13,116)(14,117)(15,118)(16,119)(17,120)(18,111)(19,112)(20,113)(21,135)(22,136)(23,137)(24,138)(25,139)(26,140)(27,131)(28,132)(29,133)(30,134)(31,125)(32,126)(33,127)(34,128)(35,129)(36,130)(37,121)(38,122)(39,123)(40,124)(41,96)(42,97)(43,98)(44,99)(45,100)(46,91)(47,92)(48,93)(49,94)(50,95)(51,108)(52,109)(53,110)(54,101)(55,102)(56,103)(57,104)(58,105)(59,106)(60,107)(61,73)(62,74)(63,75)(64,76)(65,77)(66,78)(67,79)(68,80)(69,71)(70,72)(141,153)(142,154)(143,155)(144,156)(145,157)(146,158)(147,159)(148,160)(149,151)(150,152), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,62)(2,63)(3,64)(4,65)(5,66)(6,67)(7,68)(8,69)(9,70)(10,61)(11,154)(12,155)(13,156)(14,157)(15,158)(16,159)(17,160)(18,151)(19,152)(20,153)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35)(41,60)(42,51)(43,52)(44,53)(45,54)(46,55)(47,56)(48,57)(49,58)(50,59)(71,83)(72,84)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)(79,81)(80,82)(91,102)(92,103)(93,104)(94,105)(95,106)(96,107)(97,108)(98,109)(99,110)(100,101)(111,149)(112,150)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,136)(122,137)(123,138)(124,139)(125,140)(126,131)(127,132)(128,133)(129,134)(130,135), (1,55)(2,56)(3,57)(4,58)(5,59)(6,60)(7,51)(8,52)(9,53)(10,54)(11,27)(12,28)(13,29)(14,30)(15,21)(16,22)(17,23)(18,24)(19,25)(20,26)(31,153)(32,154)(33,155)(34,156)(35,157)(36,158)(37,159)(38,160)(39,151)(40,152)(41,67)(42,68)(43,69)(44,70)(45,61)(46,62)(47,63)(48,64)(49,65)(50,66)(71,98)(72,99)(73,100)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,97)(81,107)(82,108)(83,109)(84,110)(85,101)(86,102)(87,103)(88,104)(89,105)(90,106)(111,138)(112,139)(113,140)(114,131)(115,132)(116,133)(117,134)(118,135)(119,136)(120,137)(121,147)(122,148)(123,149)(124,150)(125,141)(126,142)(127,143)(128,144)(129,145)(130,146), (1,16,67,32)(2,17,68,33)(3,18,69,34)(4,19,70,35)(5,20,61,36)(6,11,62,37)(7,12,63,38)(8,13,64,39)(9,14,65,40)(10,15,66,31)(21,50,153,54)(22,41,154,55)(23,42,155,56)(24,43,156,57)(25,44,157,58)(26,45,158,59)(27,46,159,60)(28,47,160,51)(29,48,151,52)(30,49,152,53)(71,128,88,111)(72,129,89,112)(73,130,90,113)(74,121,81,114)(75,122,82,115)(76,123,83,116)(77,124,84,117)(78,125,85,118)(79,126,86,119)(80,127,87,120)(91,147,107,131)(92,148,108,132)(93,149,109,133)(94,150,110,134)(95,141,101,135)(96,142,102,136)(97,143,103,137)(98,144,104,138)(99,145,105,139)(100,146,106,140) );
G=PermutationGroup([[(1,86),(2,87),(3,88),(4,89),(5,90),(6,81),(7,82),(8,83),(9,84),(10,85),(11,114),(12,115),(13,116),(14,117),(15,118),(16,119),(17,120),(18,111),(19,112),(20,113),(21,135),(22,136),(23,137),(24,138),(25,139),(26,140),(27,131),(28,132),(29,133),(30,134),(31,125),(32,126),(33,127),(34,128),(35,129),(36,130),(37,121),(38,122),(39,123),(40,124),(41,96),(42,97),(43,98),(44,99),(45,100),(46,91),(47,92),(48,93),(49,94),(50,95),(51,108),(52,109),(53,110),(54,101),(55,102),(56,103),(57,104),(58,105),(59,106),(60,107),(61,73),(62,74),(63,75),(64,76),(65,77),(66,78),(67,79),(68,80),(69,71),(70,72),(141,153),(142,154),(143,155),(144,156),(145,157),(146,158),(147,159),(148,160),(149,151),(150,152)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,62),(2,63),(3,64),(4,65),(5,66),(6,67),(7,68),(8,69),(9,70),(10,61),(11,154),(12,155),(13,156),(14,157),(15,158),(16,159),(17,160),(18,151),(19,152),(20,153),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35),(41,60),(42,51),(43,52),(44,53),(45,54),(46,55),(47,56),(48,57),(49,58),(50,59),(71,83),(72,84),(73,85),(74,86),(75,87),(76,88),(77,89),(78,90),(79,81),(80,82),(91,102),(92,103),(93,104),(94,105),(95,106),(96,107),(97,108),(98,109),(99,110),(100,101),(111,149),(112,150),(113,141),(114,142),(115,143),(116,144),(117,145),(118,146),(119,147),(120,148),(121,136),(122,137),(123,138),(124,139),(125,140),(126,131),(127,132),(128,133),(129,134),(130,135)], [(1,55),(2,56),(3,57),(4,58),(5,59),(6,60),(7,51),(8,52),(9,53),(10,54),(11,27),(12,28),(13,29),(14,30),(15,21),(16,22),(17,23),(18,24),(19,25),(20,26),(31,153),(32,154),(33,155),(34,156),(35,157),(36,158),(37,159),(38,160),(39,151),(40,152),(41,67),(42,68),(43,69),(44,70),(45,61),(46,62),(47,63),(48,64),(49,65),(50,66),(71,98),(72,99),(73,100),(74,91),(75,92),(76,93),(77,94),(78,95),(79,96),(80,97),(81,107),(82,108),(83,109),(84,110),(85,101),(86,102),(87,103),(88,104),(89,105),(90,106),(111,138),(112,139),(113,140),(114,131),(115,132),(116,133),(117,134),(118,135),(119,136),(120,137),(121,147),(122,148),(123,149),(124,150),(125,141),(126,142),(127,143),(128,144),(129,145),(130,146)], [(1,16,67,32),(2,17,68,33),(3,18,69,34),(4,19,70,35),(5,20,61,36),(6,11,62,37),(7,12,63,38),(8,13,64,39),(9,14,65,40),(10,15,66,31),(21,50,153,54),(22,41,154,55),(23,42,155,56),(24,43,156,57),(25,44,157,58),(26,45,158,59),(27,46,159,60),(28,47,160,51),(29,48,151,52),(30,49,152,53),(71,128,88,111),(72,129,89,112),(73,130,90,113),(74,121,81,114),(75,122,82,115),(76,123,83,116),(77,124,84,117),(78,125,85,118),(79,126,86,119),(80,127,87,120),(91,147,107,131),(92,148,108,132),(93,149,109,133),(94,150,110,134),(95,141,101,135),(96,142,102,136),(97,143,103,137),(98,144,104,138),(99,145,105,139),(100,146,106,140)]])
200 conjugacy classes
class | 1 | 2A | ··· | 2O | 2P | ··· | 2W | 4A | ··· | 4P | 5A | 5B | 5C | 5D | 10A | ··· | 10BH | 10BI | ··· | 10CN | 20A | ··· | 20BL |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
200 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C4 | C5 | C10 | C10 | C10 | C20 | D4 | C5×D4 |
kernel | C22⋊C4×C2×C10 | C10×C22⋊C4 | C23×C20 | C24×C10 | C23×C10 | C22×C22⋊C4 | C2×C22⋊C4 | C23×C4 | C25 | C24 | C22×C10 | C23 |
# reps | 1 | 12 | 2 | 1 | 16 | 4 | 48 | 8 | 4 | 64 | 8 | 32 |
Matrix representation of C22⋊C4×C2×C10 ►in GL5(𝔽41)
40 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 37 | 0 |
0 | 0 | 0 | 0 | 37 |
40 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,37,0,0,0,0,0,37],[40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,32,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;
C22⋊C4×C2×C10 in GAP, Magma, Sage, TeX
C_2^2\rtimes C_4\times C_2\times C_{10}
% in TeX
G:=Group("C2^2:C4xC2xC10");
// GroupNames label
G:=SmallGroup(320,1514);
// by ID
G=gap.SmallGroup(320,1514);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1120,1149]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^10=c^2=d^2=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations